Blogdoanhnghiep.edu.vn - Cổng thông tin kiến thức tổng hợp

Giải Toán 9 Bài 3: Giải hệ phương trình bằng phương pháp thế Giải SGK Toán 9 Tập 2 (trang 15, 16)

Tháng Mười Một 14, 2023 by Blogdoanhnghiep.edu.vn

Bạn đang xem bài viết Giải Toán 9 Bài 3: Giải hệ phương trình bằng phương pháp thế Giải SGK Toán 9 Tập 2 (trang 15, 16) tại Blogdoanhnghiep.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 9 trang 15, 16 Tập 2 giúp các bạn học sinh tham khảo cách giải, đối chiếu với lời giải hay chính xác phù hợp với năng lực của các bạn lớp 9.

Giải Toán lớp 9 Bài 3: Giải hệ phương trình bằng phương pháp thế được biên soạn đầy đủ tóm tắt lý thuyết, trả lời các câu hỏi phần bài tập cuối bài trang 15, 16. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm, củng cố, bồi dưỡng và kiểm tra vốn kiến thức của bản thân. Vậy sau đây là nội dung chi tiết giải bài tập Toán 9 bài 3 chương 3 tập 2, mời các bạn cùng theo dõi tại đây.

Mục Lục Bài Viết

  • Lý thuyết Giải hệ phương trình bằng phương pháp thế
    • 1. Phương trình bậc nhất 2 ẩn
    • 2. Quy tắc thế
    • 3. Cách giải hệ phương trình bằng phương pháp thế
  • Giải bài tập toán 9 trang 15 tập 2
    • Bài 12 (trang 15 SGK Toán 9 Tập 2)
    • Bài 13 (trang 15 SGK Toán 9 Tập 2)
    • Bài 14 (trang 15 SGK Toán 9 Tập 2)
  • Giải bài tập toán 9 trang 15 tập 2: Luyện tập
    • Bài 15 (trang 15 SGK Toán 9 Tập 2)
    • Bài 16 (trang 16 SGK Toán 9 Tập 2)
    • Bài 17 (trang 16 SGK Toán 9 Tập 2)
    • Bài 18 (trang 16 SGK Toán 9 Tập 2)
    • Bài 19 (trang 16 SGK Toán 9 Tập 2)

Lý thuyết Giải hệ phương trình bằng phương pháp thế

1. Phương trình bậc nhất 2 ẩn

Phương trình bậc nhất hai ẩn x, y là hệ thức có dạng: ax + by = c, trong đó a, b, c là các số đã biết (trong đó a ≠ 0 hoặc b ≠ 0 ).

Khám Phá Thêm:   Văn mẫu lớp 12: Tóm tắt tác phẩm Vợ nhặt của Kim Lân (30 mẫu) Tóm tắt Vợ nhặt

* Trong phương trình ax + by = c, nếu giá trị của vế trái tại x = x0 và y =y0 bằng vế phải thì cặp số (x0; y0) được gọi là một nghiệm của phương trình.

Chú ý: Trong mặt phẳng tọa độ Oxy mỗi nghiệm của phương trình ax + by = c được biểu diễn bởi một điểm. Nghiệm (x0; y0) được biểu diễn bởi điểm có tọa độ (x0; y0).

Ví dụ: Các phương trình bậc nhất hai ẩn là 2x + y = 1; x – y = 2; ….

2. Quy tắc thế

Qui tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương.

Quy tắc thế gồm hai bước sau:

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới để thay thế cho phương trình thứ hai trong hệ (và giữ nguyên phương trình thứ nhất) ta được hệ mới tương đương với hệ phương trình đã cho.

3. Cách giải hệ phương trình bằng phương pháp thế

Căn cứ vào quy tắc thế, để giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế, ta làm như sau:

Bước 1. Rút x hoặc y từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

Bước 2. Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

3. Chú ý

+ Nếu thấy xuất hiện phương trình có các hệ số của hai ẩn đểu bằng 0 thì hệ phương trình đã cho có thể có vô số nghiệm hoặc vô nghiệm.

Giải bài tập toán 9 trang 15 tập 2

Bài 12 (trang 15 SGK Toán 9 Tập 2)

Giải các hệ phương trình sau bằng phương pháp thế:

a) left{begin{matrix} x - y =3 & & \ 3x-4y=2 & & end{matrix}right.

Khám Phá Thêm:   Phương pháp giải bài toán chuyển động cùng chiều và gặp nhau lớp 5 Bài tập Toán lớp 5

b) left{begin{matrix} 7x - 3y =5 & & \ 4x+y=2 & & end{matrix}right.

c) left{begin{matrix} x +3y =-2 & & \ 5x-4y=11 & & end{matrix}right.

Xem gợi ý đáp án

a) left{begin{matrix} x - y =3 & & \ 3x-4y=2 & & end{matrix}right.

Rút x từ phương trình trên rồi thế vào phương trình dưới , ta được:

left{ matrix{
x - y = 3 hfill cr
3x - 4y = 2 hfill cr} right. Leftrightarrow left{ matrix{
x = 3 + y hfill cr
3left( {3 + y} right) - 4y = 2 hfill cr} right.

Leftrightarrow left{ matrix{
x = 3 + y hfill cr
9 + 3y - 4y = 2 hfill cr} right.

Leftrightarrow left{ matrix{
x = 3 + y hfill cr
- y = 2 - 9 hfill cr} right. Leftrightarrow left{ matrix{
x = 3 + y hfill cr
y = 7 hfill cr} right. Leftrightarrow left{ matrix{
x = 3 + 7 hfill cr
y = 7 hfill cr} right.

Leftrightarrow left{ matrix{
x = 10 hfill cr
y = 7 hfill cr} right.

Vậy hệ đã cho có nghiệm là (x;y)=(10; 7).

b) left{begin{matrix} 7x - 3y =5 & & \ 4x+y=2 & & end{matrix}right.

Rút y từ phương trình dưới rồi thế vào phương trình trên, ta có:

left{ begin{array}{l}7x - 3y = 5\4x + y = 2end{array} right. Leftrightarrow left{ begin{array}{l}7x - 3y = 5\y = 2 - 4xend{array} right.

Leftrightarrow left{ begin{array}{l}y = 2 - 4x\7x - 3.left( {2 - 4x} right) = 5end{array} right. Leftrightarrow left{ begin{array}{l}y = 2 - 4x\7x - 6 + 12x = 5end{array} right.

Leftrightarrow left{ begin{array}{l}y = 2 - 4x\7x + 12x = 5 + 6end{array} right. Leftrightarrow left{ begin{array}{l}y = 2 - 4x\19x = 11end{array} right.

Leftrightarrow left{ begin{array}{l}y = 2 - 4x\x = dfrac{{11}}{{19}}end{array} right. Leftrightarrow left{ begin{array}{l}x = dfrac{{11}}{{19}}\y = 2 - 4.dfrac{{11}}{{19}}end{array} right.\ Leftrightarrow left{ begin{array}{l}x = dfrac{{11}}{{19}}\y = - dfrac{6}{{19}}end{array} right.

Vậy hệ có nghiệm duy nhất là {left(dfrac{11}{19}; dfrac{-6}{19} right)}

c) left{begin{matrix} x +3y =-2 & & \ 5x-4y=11 & & end{matrix}right.

Rút x từ phương trình trên rồi thế vào phương trình dưới, ta có:

left{ matrix{
x + 3y = - 2 hfill cr
5x - 4y = 11 hfill cr} right. Leftrightarrow left{ matrix{
x = - 2 - 3y hfill cr
5left( { - 2 - 3y} right) - 4y = 11 hfill cr} right.

Leftrightarrow left{ matrix{
x = - 2 - 3y hfill cr
- 10 - 15y - 4y = 11 hfill cr} right.

Leftrightarrow left{ matrix{
x = - 2 - 3y hfill cr
- 15y - 4y = 11 + 10 hfill cr} right. Leftrightarrow left{ matrix{
x = - 2 - 3y hfill cr
- 19y = 21 hfill cr} right.

Leftrightarrow left{ matrix{
x = - 2 - 3y hfill cr
y = - dfrac{ 21}{ 19} hfill cr} right.

Leftrightarrow left{ matrix{
x = - 2 - 3. dfrac{ - 21}{19} hfill cr
y = - dfrac{21}{19} hfill cr} right. Leftrightarrow left{ matrix{
x = dfrac{25}{19} hfill cr
y = - dfrac{21}{19} hfill cr} right.

Vậy hệ có nghiệm duy nhất là {left(dfrac{25}{19}; dfrac{-21}{19} right)}

Bài 13 (trang 15 SGK Toán 9 Tập 2)

Giải các hệ phương trình sau bằng phương pháp thế:

a) left{begin{matrix} 3x - 2y = 11 & & \ 4x - 5y = 3& & end{matrix}right.;

b) left{begin{matrix} dfrac{x}{2}- dfrac{y}{3} = 1& & \ 5x - 8y = 3& & end{matrix}right.

Xem gợi ý đáp án

a) Ta có:

left{ matrix{
3x - 2y = 11 hfill cr
4x - 5y = 3 hfill cr} right. Leftrightarrow left{ matrix{
2y = 3x - 11 hfill cr
4x - 5y = 3 hfill cr} right.

Leftrightarrow left{ matrix{
y = dfrac{3x - 11}{2} (1) hfill cr
4x - 5.dfrac{3x - 11}{ 2} = 3  (2) hfill cr} right.

Giải phương trình (2):

4x - 5.dfrac{3x - 11}{ 2} = 3

Leftrightarrow 4x - dfrac{15x - 55}{ 2} = 3

Leftrightarrow dfrac{4x.2}{2} - dfrac{15x - 55}{ 2} = dfrac{3.2}{2}

Leftrightarrow dfrac{8x}{2} - dfrac{15x - 55}{2} = dfrac{6}{2}

Leftrightarrow dfrac{8x - 15x + 55}{2} = dfrac{6}{2}

Leftrightarrow 8x - 15x + 55 = 6

Leftrightarrow - 7x = 6 - 55

Leftrightarrow - 7x = - 49

Leftrightarrow x=7

Thay x=7 vào phương trình (1), ta được:

y = dfrac{3.7 - 11}{2}=5

Vậy hệ có nghiệm duy nhất là (7; 5).

b) Ta có:

left{ matrix{
dfrac{x}{2} - dfrac{y}{3} = 1 hfill cr
5x - 8y = 3 hfill cr} right. Leftrightarrow left{ matrix{
dfrac{x }{2} = 1 + dfrac{y}{3} hfill cr
5x - 8y = 3 hfill cr} right.

Leftrightarrow left{ matrix{
x = 2 + dfrac{2y}{3}  (1) hfill cr
5{left(2 + dfrac{2y}{3} right)} - 8y = 3  (2) hfill cr} right.

Giải phương trình (2), ta được:

5{left(2 + dfrac{2y}{3} right)} - 8y = 3

Leftrightarrow 5.2 + 5. dfrac{2y}{3}-8y = 3

Leftrightarrow 10 + dfrac{10y}{3} -8y =3

Leftrightarrow dfrac{30}{3} +dfrac{10y}{3} - dfrac{24y}{3} = dfrac{9}{3}

Leftrightarrow 30+ 10y -24y=9

Leftrightarrow -14y=9-30

Leftrightarrow -14y=-21

Leftrightarrow y=dfrac{21}{14}

Leftrightarrow y= dfrac{3}{2}

Thay y= dfrac{3}{2}vào (1), ta được:

x = 2 + dfrac{2. dfrac{3}{2}}{3}=2+dfrac{3}{3}=3.

Vậy hệ phương trình có nghiệm duy nhất {left(3; dfrac{3}{2} right)}.

Bài 14 (trang 15 SGK Toán 9 Tập 2)

Giải các hệ phương trình bằng phương pháp thế:

a) left{begin{matrix} x + ysqrt{5} = 0& & \ xsqrt{5} + 3y = 1 - sqrt{5}& & end{matrix}right.

b) left{begin{matrix} (2 - sqrt{3})x - 3y = 2 + 5sqrt{3}& & \ 4x + y = 4 -2sqrt{3}& & end{matrix}right.

Xem gợi ý đáp án

a) Ta có:

left{ matrix{
x + ysqrt 5 = 0 hfill cr
xsqrt 5 + 3y = 1 - sqrt 5 hfill cr} right.

Leftrightarrow left{ matrix{
x = - ysqrt 5 hfill cr
left( { - ysqrt 5 } right).sqrt 5 + 3y = 1 - sqrt 5 hfill cr} right.

Leftrightarrow left{ matrix{
x = - ysqrt 5 hfill cr
- 5y + 3y = 1 - sqrt 5 hfill cr} right. Leftrightarrow left{ matrix{
x = - ysqrt 5 hfill cr
- 2y = 1 - sqrt 5 hfill cr} right.

Leftrightarrow left{ matrix{
x = - ysqrt 5 hfill cr
y = dfrac{1 - sqrt 5 }{ - 2} hfill cr} right. Leftrightarrow left{ matrix{
x = - ysqrt 5 hfill cr
y = dfrac{sqrt 5 - 1}{2} hfill cr} right.

Leftrightarrow left{ matrix{
x = - dfrac{sqrt 5 - 1}{ 2}.sqrt 5 hfill cr
y = dfrac{sqrt 5 - 1}{2} hfill cr} right.

Leftrightarrow left{ matrix{
x = - dfrac{5 - sqrt 5 }{2} hfill cr
y = dfrac{sqrt 5 - 1}{2} hfill cr} right. Leftrightarrow left{ matrix{
x = dfrac{sqrt 5 - 5}{ 2} hfill cr
y = dfrac{sqrt 5 - 1}{ 2} hfill cr} right.

Vậy hệ phương trình có nghiệm duy nhất {left(dfrac{sqrt 5 - 5}{ 2} ; dfrac{sqrt 5 - 1}{ 2} right)}

b) left{begin{matrix} (2 - sqrt{3})x - 3y = 2 + 5sqrt{3}& & \ 4x + y = 4 -2sqrt{3}& & end{matrix}right.

Ta có:

left{ matrix{
left( {2 - sqrt 3 } right)x - 3y = 2 + 5sqrt 3 hfill cr
4x + y = 4 - 2sqrt 3 hfill cr} right.

Leftrightarrow left{ matrix{
left( {2 - sqrt 3 } right)x - 3left( {4 - 2sqrt 3 - 4x} right) = 2 + 5sqrt 3  (1) hfill cr
y = 4 - 2sqrt 3 - 4x  (2) hfill cr} right.

Giải phương trình (1), ta được:

( 2 - sqrt 3 )x - 3(4 - 2sqrt 3 - 4x) = 2 + 5sqrt 3

Leftrightarrow 2x -sqrt 3 x -12 + 6 sqrt 3 + 12x=2+ 5 sqrt 3

Leftrightarrow 2x -sqrt 3 x + 12x=2+ 5 sqrt 3 +12 -6 sqrt 3

Leftrightarrow (2 -sqrt 3 + 12)x= 2+12 +5sqrt 3 -6 sqrt 3

Leftrightarrow (14- sqrt 3)x=14-sqrt 3

Leftrightarrow x=1

Thay x=1, vào (2), ta được:

y = 4 - 2sqrt 3 - 4.1=-2 sqrt 3.

Vậy hệ phương trình có nghiệm duy nhất (1; -2 sqrt 3).

Giải bài tập toán 9 trang 15 tập 2: Luyện tập

Bài 15 (trang 15 SGK Toán 9 Tập 2)

Giải hệ phương trình left{begin{matrix} x + 3y = 1 & & \ (a^{2} + 1)x + 6y = 2a & & end{matrix}right.trong mỗi trường hợp sau:

a) a = -1

b) a = 0

c) a = 1

Xem gợi ý đáp án

a) a = -1

Thay a = -1 vào hệ, ta được:

left{begin{matrix} x + 3y = 1 & & \ {left((-1)^2+1 right)}x+ 6y = 2.(-1) & & end{matrix}right.

Leftrightarrow left{begin{matrix} x + 3y = 1 & & \ 2x+ 6y = -2 & & end{matrix}right.

Leftrightarrow left{begin{matrix} x + 3y = 1 & & \ x+ 3y = -1 & & end{matrix}right. Leftrightarrow left{begin{matrix} x = 1 -3y & & \ (1-3y)+ 3y = -1 & & end{matrix}right.

Leftrightarrow left{begin{matrix} x = 1 -3y & & \ 1 = -1 (vô  lý )& & end{matrix}right.

Vậy hệ phương trình trên vô nghiệm.

b) a = 0

Thay a = 0 vào hệ, ta được:

left{ matrix{
x + 3y = 1 hfill cr
left( {0 + 1} right)x + 6y = 2.0 hfill cr} right. Leftrightarrow left{ matrix{
x + 3y = 1 hfill cr
x + 6y = 0 hfill cr} right.

Leftrightarrow left{ matrix{
x + 3y = 1 hfill cr
x = - 6y hfill cr} right.

Leftrightarrow left{ matrix{
- 6y + 3y = 1 hfill cr
x = - 6y hfill cr} right. Leftrightarrow left{ matrix{
- 3y = 1 hfill cr
x = - 6y hfill cr} right.

Leftrightarrow left{ matrix{
y = dfrac{ - 1}{3} hfill cr
x = - 6y hfill cr} right. Leftrightarrow left{ matrix{
y = dfrac{ - 1}{3} hfill cr
x = - 6. dfrac{ - 1}{3} hfill cr} right. Leftrightarrow left{ matrix{
y = dfrac{ - 1}{3} hfill cr
x = 2 hfill cr} right.

Hệ phương trình có nghiệm{left(2; -dfrac{1}{3} right)} .

c) a = 1

Thay a = 1 vào hệ, ta được:

left{ matrix{
x + 3y = 1 hfill cr
({1^2} + 1)x + 6y = 2.1 hfill cr} right. Leftrightarrow left{ matrix{
x + 3y = 1 hfill cr
2x + 6y = 2 hfill cr} right.

Leftrightarrow left{ matrix{
x + 3y = 1 hfill cr
x + 3y = 1 hfill cr} right.

Leftrightarrow left{ begin{array}{l}x = 1 - 3y\1 - 3y + 3y = 1end{array} right. Leftrightarrow left{ begin{array}{l}x = 1 - 3y\1 = 1left( {luôn,đúng} right)end{array} right.

Vậy hệ phương trình có vô số nghiệm left{ begin{array}{l}x = 1 - 3y\y in mathbb{R}end{array} right.

Bài 16 (trang 16 SGK Toán 9 Tập 2)

Giải các hệ phương trình sau bằng phương pháp thế

a) left{begin{matrix} 3x - y = 5 & & \ 5x + 2y = 23 & & end{matrix}right.

b) left{begin{matrix} 3x +5y = 1 & & \ 2x -y =-8 & & end{matrix}right.

c. left{begin{matrix} dfrac{x}{y} = dfrac{2}{3}& & \ x + y - 10 = 0 & & end{matrix}right.

Xem gợi ý đáp án

a) Ta có:

left{ matrix{
3x - y = 5 hfill cr
5x + 2y = 23 hfill cr} right. Leftrightarrow left{ matrix{
y = 3x - 5 hfill cr
5x + 2left( {3x - 5} right) = 23 hfill cr} right.

Leftrightarrow left{ matrix{
y = 3x - 5 hfill cr
5x + 6x - 10 = 23 hfill cr} right.

Leftrightarrow left{ matrix{
y = 3x - 5 hfill cr
11x = 23 + 10 hfill cr} right. Leftrightarrow left{ matrix{
y = 3x - 5 hfill cr
11x = 33 hfill cr} right.

Leftrightarrow left{ matrix{
y = 3x - 5 hfill cr
x = 3 hfill cr} right.

Leftrightarrow left{ matrix{
y = 3.3 - 5 hfill cr
x = 3 hfill cr} right. Leftrightarrow left{ matrix{
y = 4 hfill cr
x = 3 hfill cr} right.

Vậy hệ có nghiệm duy nhất là (x; y) = (3; 4).

b) Ta có:

left{ matrix{
3x + 5y = 1 hfill cr
2x - y = - 8 hfill cr} right. Leftrightarrow left{ matrix{
3x + 5y = 1 hfill cr
y = 2x + 8 hfill cr} right.

Leftrightarrow left{ matrix{
3x + 5left( {2x + 8} right) = 1 hfill cr
y = 2x + 8 hfill cr} right.

Leftrightarrow left{ matrix{
3x + 10x + 40 = 1 hfill cr
y = 2x + 8 hfill cr} right. Leftrightarrow left{ matrix{
13x = 1 - 40 hfill cr
y = 2x + 8 hfill cr} right.

Leftrightarrow left{ matrix{
13x = - 39 hfill cr
y = 2x + 8 hfill cr} right. Leftrightarrow left{ matrix{
x = - 3 hfill cr
y = 2x + 8 hfill cr} right.

Leftrightarrow left{ matrix{
x = - 3 hfill cr
y = 2.left( { - 3} right) + 8 hfill cr} right.

Leftrightarrow left{ matrix{
x = - 3 hfill cr
y = 2 hfill cr} right.

Vậy hệ có nghiệm (x; y) = (-3; 2).

Khám Phá Thêm:   Hướng dẫn đăng nhập và sử dụng eNetViet trên điện thoại

c) Ta có:

left{ matrix{
dfrac{x}{y} = dfrac{2}{3} hfill cr
x + y - 10 = 0 hfill cr} right. Leftrightarrow left{ matrix{
x = dfrac{2y}{3} hfill cr
dfrac{2y}{3} + y = 10 hfill cr} right.

Leftrightarrow left{ matrix{
x = dfrac{2y}{3} hfill cr
{left( dfrac{2}{3} + 1 right)}y = 10 hfill cr} right.

Leftrightarrow left{ matrix{
x = dfrac{2y}{3} hfill cr
dfrac{5}{ 3}y = 10 hfill cr} right. Leftrightarrow left{ matrix{
x = dfrac{2y}{3} hfill cr
y = 6 hfill cr} right.

Leftrightarrow left{ matrix{
x = dfrac{2.6}{3} hfill cr
y = 6 hfill cr} right. Leftrightarrow left{ matrix{
x = 4 hfill cr
y = 6 hfill cr} right.

Vậy nghiệm của hệ là (x; y) = (4; 6).

Bài 17 (trang 16 SGK Toán 9 Tập 2)

a) left{begin{matrix} xsqrt{2}- y sqrt{3}=1 & & \ x + ysqrt{3} = sqrt{2}& & end{matrix}right.

b) left{begin{matrix} x - 2sqrt{2} y = sqrt{5}& & \ xsqrt{2} + y = 1 - sqrt{10}& & end{matrix}right.

c. left{begin{matrix} (sqrt{2}- 1)x - y = sqrt{2}& & \ x + (sqrt{2}+ 1)y = 1& & end{matrix}right.

Xem gợi ý đáp án

a) Ta có:

left{ matrix{
xsqrt 2 - ysqrt 3 = 1 hfill cr
x + ysqrt 3 = sqrt 2 hfill cr} right. Leftrightarrow left{ matrix{
xsqrt 2 - ysqrt 3 = 1 hfill cr
x = sqrt 2 - ysqrt 3 hfill cr} right.

Leftrightarrow left{ matrix{
left( {sqrt 2-ysqrt 3 } right)sqrt 2 - ysqrt 3 = 1  (1) hfill cr
x = sqrt 2 - ysqrt 3  (2) hfill cr} right.

Giải phương trình (1), ta được:

( sqrt 2 - ysqrt 3)sqrt 2 - ysqrt 3 = 1

Leftrightarrow (sqrt 2)^2 - ysqrt 3 . sqrt 2 - ysqrt 3 = 1

Leftrightarrow 2 - ysqrt 3 . sqrt 2 - ysqrt 3 = 1

Leftrightarrow -ysqrt 3. sqrt 2 - ysqrt 3 = 1 - 2

begin{array}{l}
Leftrightarrow - ysqrt 6 - ysqrt 3 = - 1\
Leftrightarrow yleft( {sqrt 6 + sqrt 3 } right) = 1\
Leftrightarrow y = dfrac{1}{{sqrt 6 + sqrt 3 }}\
Leftrightarrow y = dfrac{{sqrt 6 - sqrt 3 }}{3}\
Leftrightarrow y = dfrac{{sqrt 3 left( {sqrt 2 - 1} right)}}{3}
end{array}

Thay y tìm được vào phương trình (2), ta được:

x = sqrt 2 - dfrac{sqrt 3 (sqrt 2 -1)}{3}.sqrt 3

Leftrightarrow x=sqrt 2 - dfrac{sqrt 3 .sqrt 3(sqrt 2 -1)}{3}

Leftrightarrow x=sqrt 2 - dfrac{ 3(sqrt 2 -1)}{3} =sqrt 2 - (sqrt 2 -1)

Leftrightarrow x=sqrt 2 -sqrt 2 +1=1

Vậy hệ phương trình đã cho có nghiệm duy nhất là:{left( 1;dfrac{sqrt 3 (sqrt 2 -1)}{3} right)}

b) Ta có:

left{ matrix{
x - 2sqrt 2 y = sqrt 5 hfill cr
xsqrt 2 + y = 1 - sqrt {10} hfill cr} right.

Leftrightarrow left{ matrix{
x = 2sqrt 2 y + sqrt 5  (1) hfill cr
left( {2sqrt 2 y + sqrt 5 } right).sqrt 2 + y = 1 - sqrt {10} (2) hfill cr} right.

Giải phương trình (2), ta được:

left( {2sqrt 2 y + sqrt 5 } right).sqrt 2 + y = 1 - sqrt {10}

Leftrightarrow 2(sqrt 2 .sqrt 2)y + sqrt 5 .sqrt 2 + y = 1 - sqrt {10}

Leftrightarrow 4y + sqrt{10}+y=1- sqrt{10}

Leftrightarrow 4y +y=1- sqrt{10}- sqrt{10}

Leftrightarrow 5y=1-2 sqrt{10}

Leftrightarrow y=dfrac{1-2 sqrt{10}}{5}

Thay y=dfrac{1-2 sqrt{10}}{5} vào (1), ta được:

x = 2sqrt 2 .dfrac{1-2 sqrt{10}}{5} + sqrt 5= dfrac{2sqrt 2 -4 sqrt{20}}{5} + sqrt 5

Leftrightarrow x=dfrac{2sqrt 2 -4 .2sqrt{5}}{5} + sqrt 5=dfrac{2sqrt 2 -8sqrt{5}+ 5sqrt 5}{5}

Leftrightarrow x=dfrac{2 sqrt 2 -3 sqrt 5}{5}

Vậy hệ có nghiệm duy nhất là: (x; y) = {left(dfrac{2sqrt{2} - 3sqrt{5}}{5};dfrac{1 - 2sqrt{10}}{5}right)}

c) Ta có:

left{ matrix{
left( {sqrt 2 - 1} right)x - y = sqrt 2 hfill cr
x + left( {sqrt 2 + 1} right)y = 1 hfill cr} right.

left{ begin{array}{l}y = left( {sqrt 2 - 1} right)x - sqrt 2 ,,,,,left( 1 right)\x + left( {sqrt 2 + 1} right)left[ {left( {sqrt 2 - 1} right)x - sqrt 2 } right] = 1,,,left( 2 right)end{array} right.

Giải phương trình (2), ta được:

x + left( {sqrt 2 + 1} right)left[ { left( {sqrt 2 - 1} right)x} -sqrt 2 right] = 1

Leftrightarrow x + (sqrt 2 + 1) (sqrt 2 - 1)x -( sqrt 2 + 1). sqrt 2 = 1

Leftrightarrow x + {left((sqrt 2)^2 - 1^2 right)}x-( 2 + sqrt 2) = 1

Leftrightarrow x + x = 1+( 2 + sqrt 2)

Leftrightarrow 2x =3 +sqrt 2

Leftrightarrow x=dfrac{3+ sqrt 2}{2}

Thay x=dfrac{3+ sqrt 2}{2}vào (1), ta được:

y = left( {sqrt 2 - 1} right).dfrac{3+ sqrt 2}{2} - sqrt 2

Leftrightarrow y= dfrac{(sqrt 2 - 1 )(3+ sqrt 2)}{2} - sqrt 2

Leftrightarrow y= dfrac{3sqrt 2 -3 +2 -sqrt 2}{2} - sqrt 2

Leftrightarrow y= dfrac{2sqrt 2 -1}{2} - sqrt 2

Leftrightarrow y= dfrac{2sqrt 2 -1-2sqrt 2}{2}

Leftrightarrow y= dfrac{-1}{2}

Vậy hệ có nghiệm (x; y) = {left(dfrac{3 + sqrt{2}}{2};dfrac{-1}{2} right)}

Bài 18 (trang 16 SGK Toán 9 Tập 2)

a) Xác định các hệ số a và b, biết rằng hệ phương trình

left{begin{matrix} 2x + by=-4 & & \ bx - ay=-5& & end{matrix}right.

có nghiệm là (1; -2)

b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là (sqrt{2} - 1; sqrt{2}).

Xem gợi ý đáp án

a) Hệ phương trình có nghiệm là (1; -2) khi và chỉ khi (1; -2) thỏa mãn hệ phương trình. Thay x=1, y=-2 vào hệ, ta có:

left{begin{matrix} 2 - 2b=-4 & & \ b+2a=-5 & & end{matrix}right. Leftrightarrow left{begin{matrix} 2b=6 & & \ b+2a=-5 & & end{matrix}right.

Leftrightarrow left{begin{matrix} b=3 & & \ b+2a=-5 & & end{matrix}right. Leftrightarrow left{begin{matrix} b=3 & & \ 3+2a=-5 & & end{matrix}right.

Leftrightarrow left{begin{matrix} b=3 & & \ 2a = -5 - 3& & end{matrix}right. Leftrightarrow left{begin{matrix} b=3 & & \ 2a = -8& & end{matrix}right.

Leftrightarrow left{begin{matrix} b=3 & & \ a = -4 & & end{matrix}right.

Vậy a=-4, b=3 thì hệ có nghiệm là (1; -2).

b) Thay x=sqrt 2 - 1; y= sqrt 2 vào hệ phương trình đã cho, ta có:

left{begin{matrix} 2(sqrt{2}-1)+bsqrt{2}= -4 & & \ (sqrt{2}-1)b - asqrt{2}= -5& & end{matrix}right.

Leftrightarrow left{begin{matrix} 2sqrt{2}-2+bsqrt{2}= -4 & & \ (sqrt{2}-1)b - asqrt{2}= -5& & end{matrix}right.

Leftrightarrow left{begin{matrix} 2sqrt{2}-2+bsqrt{2}= -4 & & \ (sqrt{2}-1)b - asqrt{2}= -5& & end{matrix}right.

Leftrightarrow left{begin{matrix} bsqrt{2}= -2 - 2sqrt{2} & & \ (sqrt{2}-1)b - asqrt{2}= -5& & end{matrix}right.

Leftrightarrow left{begin{matrix} b= -(2 + sqrt{2}) & & \ asqrt{2}= -(2 + sqrt{2})(sqrt{2}-1)+5& & end{matrix}right.

Leftrightarrow left{begin{matrix} b= -(2 + sqrt{2}) & & \ asqrt{2}= -sqrt{2}+5& & end{matrix}right.

Leftrightarrow left{begin{matrix} a = dfrac{-2+5sqrt{2}}{2} & & \ b = -(2+ sqrt{2})& & end{matrix}right.

Vậy a = dfrac{-2+5sqrt{2}}{2}, b=-(2+ sqrt{2}) thì hệ trên có nghiệm là (sqrt 2 -1; sqrt 2).

Bài 19 (trang 16 SGK Toán 9 Tập 2)

Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0.

Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và x – 3:

P(x) = m{x^3} + (m - 2){x^2} - (3n - 5)x - 4n

Xem gợi ý đáp án

+) Ta có: P(x) chia hết cho x + 1 Leftrightarrow P(-1)=0

Leftrightarrow m.(-1)^3 + (m - 2).(-1)^2 - (3n - 5).(-1)

- 4n=0

Leftrightarrow -m + m - 2 + 3n - 5 - 4n = 0

Leftrightarrow -n-7=0

Leftrightarrow n+7=0 (1)

+) Lại có: P(x) chia hết cho x - 3 Leftrightarrow P(3)=0

Leftrightarrow m.3^3 + (m - 2).3^2 - (3n - 5).3 - 4n=0

Leftrightarrow 27m + 9(m - 2) - 3(3n - 5) - 4n = 0

Leftrightarrow 27m + 9m - 18 - 9n + 15 - 4n = 0

Leftrightarrow 36m-13n=3 (2)

Từ (1) và (2), ta có hệ phương trình ẩn m và n.

left{begin{matrix} n+7 = 0 & & \ 36m - 13n = 3 & & end{matrix}right. Leftrightarrow left{begin{matrix} n = -7 & & \ 36m -13.(-7)= 3 & & end{matrix}right.

Leftrightarrow left{begin{matrix} n = -7 & & \ 36m = -88 & & end{matrix}right. Leftrightarrow left{begin{matrix} n = -7& & \ m = dfrac{-22}{9}& & end{matrix}right.

Vậy m=dfrac{-22}{9}, n=-7.

Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 3: Giải hệ phương trình bằng phương pháp thế Giải SGK Toán 9 Tập 2 (trang 15, 16) tại Blogdoanhnghiep.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Bài Viết Liên Quan

Microsoft Office – Cách cài font chữ mặc định trong Word
Microsoft Office – Cách cài font chữ mặc định trong Word
Văn mẫu lớp 7: Dàn ý giải thích câu tục ngữ Uống nước nhớ nguồn (3 mẫu) Những bài văn mẫu lớp 7
Văn mẫu lớp 7: Dàn ý giải thích câu tục ngữ Uống nước nhớ nguồn (3 mẫu) Những bài văn mẫu lớp 7
BTS World là gì?
BTS World là gì?
Bài viết trước: « ‘Ăn uống đúng giờ’ – bí quyết ăn xả láng không lo tăng cân
Bài viết tiếp theo: Đặt tên con trai 2022 họ Ngô hay, ý nghĩa, tiền đồ rộng mở »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết

Copyright © 2023 · Blogdoanhnghiep.edu.vn - Thông Tin Kiến Thức Bổ Ích